- For any element a from a group, let (a) denote the set {aⁿ | n∈Z}.
 In particular, observe that the exponents of a include all
- negative integers as well as 0 and the positive integers (a⁰ is defined to be the identity).
- (a) is a Subgroup. Let G be a group, and let a be any element of G. Then, (a) is a sub- group of G.
- Since a ∈(a) , (a) is not empty.
- Let a^n , $a^m \in (a)$.
- Then, $a^{n}(a^{m})^{-1} = a^{n-m} \in (a)$;
- so,(a) is a subgroup of G.
- Let H be a nonempty subset of a group G. If ab-1 is in H whenever a and hear in Hearth is a subset of G.

In the case that G ∈(a), we say that G is cyclic and a is a generator of G.
We indicate that G is a cyclic group generated by a by writing G = (a)

• The subgroup (a) is called the cyclic subgroup of G generated by a.

- Cyclic Group. A group G is called cyclic if there is an element a in G such that G= {aⁿ | n∈Z}.
- such that $G = \{a^n \mid n \in Z\}$. • If operation is addition(+), then $G = \{ng \mid n \in Z\}$.
- Such an element a is called a generator of G.
 A cyclic group may have many generators.
- Notice that although the list . . . , a⁻², a⁻¹, a⁰, a¹, a², . . . has infinitely many entries, the set {aⁿ | n ∈ Z} might have only finitely many elements.
- Also note that, aⁱa^j = a^{i+j}
 - = a^jaⁱ,

 $= a^{j+i}$

• Every cyclic group is Abelian.
Uttarakhand Tele Education Network - EDUSAT

EXAMPLES.

 $(7^0 = 1, 7^1 = 7, 7^2 = 9, 7^3 = 3)$

- 1. In U(10), (3)= $\{1,3,7,9\} = \{3^0,3^1,3^3,3^2\}$
- Here, 3⁰ = 1
- $3^1 = 3$,
- 3² =9,
- 3³ =7,
 3⁴ =1,
- 3⁵ = 3⁴ .3 = 1.3,
- 3⁶ =3⁴.3² =9,...;
- 3⁻¹ =7 (since 3.7=1),
- 3⁻² = 3⁻¹.3⁻¹ = 7.7=9,
- $3^{-3} = 3^{-2} \cdot 3^{-1} = 9.7 = 3$,
- 3⁻⁴ = 3⁻².3⁻² = 9.9 = 1,
 3⁻⁵ = 3⁻⁴.3⁻¹ = 1.7,
- 3⁻⁵ = 3⁻⁴.3⁻¹ = 1.7, • 3⁻⁶ = 3⁻⁴.3⁻² = 1.9=9,....
- Also, {1, 3, 7, 9}={7⁰, 7³, 7¹, 7²}=(7).
- So both 3 and 7 are generators for U(10).
 Uttarakhand Tele Education Network EDUSAT

- 2. In Z_{10} , (2) = {2, 4, 6, 8, 0}. Remember, a^n means na when the operation is addition.
- 2=2
- 2+2=4
- 2+2+2=6
- 2+2+2+2=8
- 2+2+2+2+2=02+2+2+2+2=2
- 2+2+2+2+2+2=4
- 2+2+2+2+2+2+2=6,.....and so on.

(1)=Z.
Recall that, when the operation is addition,
1ⁿ is interpreted as 1+1+...+1, n terms ,when n is positive
and as (-1) + (-1) + ...+ (-1) , |n| terms when n is negative.)

• (-1) = Z. (Here each entry in the list ..., -2(-1), -1(-1), 0(-1), 1(-1), 2(-1), . . . represents a distinct

• 3. The set of integers Z under ordinary addition is an infinite cyclic group because every element is

- 4.The set Z_n ={0,1,...,n-1}, for n≥1 is a finite cyclic group under addition modulo n. Z_n =(1)=(-1)=(n-1) (Note n-1=-1modn).
 Other generators are possible depending on n.
- Unlike Z, which has only two generators, Z_n may have many generators (depending on n, we are given).
- $\mathbf{5}.Z_8$ =(1) =(3)=(5)=(7) . • To verify, for instance, that Z_8 =(3), we note that (3)={3, 3+3,3+3+3,...} ={3, 6, 1, 4, 7, 2, 5, 0}

a multiple of 1 (or of -1).

group element).

Both 1 and -1 are its generators.

Thus, 3 is a generator of Z₈.
 On the other hand, Pris not Report the Education Returns to EDUSAT

3+3+3+3=5
3+3+3+3+3=1
3+3+3+3+3+3=4
3+3+3+3+3+3=0
This "same" group can be written as: Z₇ ={1,a,2a,3a,4a,5a, 6a}. In this form, a is a generator of Z₇. It turns out that in Z₇ = {0, 1, 2, 3, 4, 5, 6}, every nonzero element generates the group.

Uttarakhand Tele Education Network - EDUSAT

In other words, if you add 1 to itself repeatedly, you eventually cycle back to 0.

• 6.In Z₇, 1 generates Z₇, since

Notice that 3 also generates Z₇:

• 7. In Z₆ = {0, 1, 2, 3, 4, 5}, only 1 and 5 are generaters.

1+1=2.

• 3+3=6

• 3+3+3=2

1+1+1=3.

1+1+1+1=4.

1+1+1+1+1=5.

1+1+1+1+1+1=6.

• 1+1+1+1+1+1=0

- Quite often in mathematics, a "nonexample" is as helpful in understanding a concept as an example.
- With regard to cyclic groups, we shall study U(8), which is not a cyclic group.
- How can we verify this?
- Notice that $U(8) = \{1, 3, 5, 7\}.$
- Notice that $U(8) = \{1, 3, 5, 7\}.$
- But (1)= {1},
- (3)= {3, 1},
- (5)={5, 1},
- $(7)=\{7, 1\}$ • so $U(8) \neq (a)$ for any a in U(8).

With these examples we are now ready to tackle cyclic groups in an abstract way and state their key properties.

Uttarakhand Tele Education Network - EDUSAT